На виробництві найбільш поширеними приладами є амперметри і вольтметри, бо саме за їхньою допомогою можна одержати інформацію про стан електричних мереж та електричного обладнання, приєднаного до цих мереж. Крім того, саме з показників амперметрів, що вимірюють струм електричних двигунів, можна оперативно визначити стан технологічного (неелектричного) обладнання — ступінь його завантаження та наявність несправності.
Саме за допомогою вимірювань напруг проводиться пошук пошкоджень в електричних мережах та в більшості електричних об’єктів. Тому вольтметри є найбільш розповсюдженими вимірювальними приладами, що обслуговують обладнання як на електричних станціях, так і в мережах та на промислових підприємствах.
Однак цими приладами, особливо вольтметрами, треба користуватися дуже уважно, пам’ятаючи,що величина власного опору цих приладів (особливо вольтметрів) у деяких випадках може впливати на точність вимірювань, в окремих випадках, наприклад при пошуку несправностей у схемах, де є елементи зі значним опором, і зовсім спотворити результати вимірювань.
Амперметри — це прилади для вимірювання електричних струмів. Залежно від величини вимірюваного струму можуть бути дещо відмінними і їхні назви: міліамперметр, мікроамперметр.
Міліамперметр має границю вимірювань струму меншу, ніж один ампер, а мікроамперметр — навіть меншу за один міліампер.
Деякі прилади використовують і для вимірювання значних струмів — кілоамперметри. Слід зауважити, що у iміліамперметрів і мікроамперметрів вимірювані струми справді протікають безпосередньо через прилади: у амперметрів — на значні струми, а у кілоамперметрів струм, що позначений на них, ніколи не протікає через коло приладу.
Для вимірювань цими приладами необхідне обладнання, яке б нормовано зменшувало вимірюваний струм до величини, прийнятної для самого вимірювального приладу. При вимірюванні змінного струму — це вимірювальні трансформатори струму, при вимірюванні постійного — це вимірювальні шунти.
Для вимірювання струму використовують також і гальванометри. Це високочутливі електровимірювальні прилади, призначені для вимірювання струмів дуже малої величини — десь від кількох мікроампер до 10 ~п А.
Але основне призначення гальванометрів є все ж не вимірювання, а визначення режиму відсутності струму при нульових (врівноважувальних) методах вимірювань у потенціометричних і мостових схемах.
Амперметри можуть бути виконані на основі вимірювальних механізмів:
Електромагнітні, електродинамічні, феродинамічні та теплові амперметри здатні вимірювати постійні та змінні струми. Магнітоелектричні ж амперметри використовують для вимірювання постійного струму.
Для вимірювань на змінному струмі ці прилади використовують з напівпровідниковими випрямлячами, але клас точності вимірювань при цьому відносно невисокий (2,5...4,0).
Амперметр електромагнітної системи — це найпростіший і найнадійніший прилад, що може працювати як у колах постійного, так і змінного струму. Струмопровідною у нього є лише обмотка нерухомої котушки, що приєднана до затискачів приладу.
Переносні електромагнітні амперметри у більшості випадків виконують на дві границі вимірювання. Це досягається відносно простим способом — намоткою котушки двома паралельними проводами і вмиканням цих двох секцій обмотки послідовно для вимірювання меншого струму і, паралельно, для вимірювання більшого струму. Границі вимірювання перемикають перемикачами. Схему амперметра з двома границями вимірювання на номінальні струми 5 і 10 А зображено на рис. 1.
Для розширення границь вимірювання, електромагнітні амперметри ніколи не використовують з шунтами, але ними часто користуються з трансформаторами струму.
Магнітоелектричні амперметри значно складніші й дорожчі за електромагнітні. У них обмотки рамок, що створюють обертовий момент у приладах, розраховані на струми лише у десятки — сотні міліампер, через наявність підводу до них струму через пружини, що мають дуже малу площу поперечного перерізу і нездатні пропускати більш значний струм.
Тому ці прилади завжди мають внутрішній шунт, що пропускає через себе більшу частину струму. Коло ж рамки вимірювального механізму тут використано як мілівольтметр, що вимірює падіння напруги на цьому шунті, пропорційне величині струму, який проходить через шунт. Шкалу такого приладу градуюють у амперах, якщо прилад має одну границю виміру. Але часто магнітоелектричні амперметри виготовляють з універсальними шунтами, придатними для користування з декількома границями вимірів. У цьому разі шкалу градуюють лише неіменованими поділками. Схему такого амперметра наведено на рис. 2.
У всіх магнітоелектричних амперметрах, послідовно з обмоткою рамки, ввімкнено резистор, виконаний з манганіну. Це суттєво зменшує похибку приладу, спричинену нагрівом обмотки рамки як протіканням власного струму, так і зміною температури довкілля.
Електродинамічні амперметри в основному використовують як зразкові електровимірювальні прилади. Виготовляють їх на основі електродинамічного вимірювального механізму. Вони однаково придатні як для вимірів на постійному, так і на змінному струмі. Ці прилади за будовою значно складніші за електромагнітні й споживають більшу потужність. Будову електродинамічного вимірюваньного механізму зображено на рис. 4.3, а принципову схему електродинамічного амперметра, розрахованого на дві границі вимірювання струму, на рис. 3.
У цій схемі для створення падіння напруги від проходження робочого струму, порівнюваної з ЕРС нормального елемента НЕ, використано більшу частину опору першої декади, а саме — 10000 Ом, завдяки чому величина напруги акумуляторної батареї АБ, що живить коло робочого струму потенціометра, може бути на один вольт меншою, ніж у схемах, де з цією самою метою використовують окремий опір.
Особливістю електродинамічного амперметра є те, що його рамка живиться через спіральні пружини, які створюють обертовий момент протидії, але неспроможні витримати скільки-небудь значний струм. Саме тому рамку приєднано до шунта, створеного резисторами rш1 і rш2, так що більша частина вимірюваного струму проходить через шунт (при вмиканні на більшу границю вимірювань — через резистор rш1, а при вмиканні на меншу границю вимірювань — через резистори rш1 і rш2), в рамку ж відгалужується лише частина вимірюваного струму, допустима по нагріванню як для обмотки рамки Wp, так і для спіральних пружинок, що підводять до рамки струм. Послідовно з рамкою ввімкнено резистори rЧК і rТК, які виконано з манганінового проводу, що має дуже малий температурний коефіцієнт опору. Ці резистори зменшують залежність величини струму рамки Iр від зміни величини опору рамки rр при її нагріві, незалежно від того, чим викликаний цей нагрів — чи зміною температури довкілля, чи проходженням через рамки струму Iр. Конденсатор Ск разом з резистором rчк є елементами частотної компенсації, яка забезпечує збіг показів амперметра при вимірах на постійному та змінному струмі.
Слід зауважити, що така проста схема компенсації похибки на змінному струмі від наявної індуктивності рамки брає ефективною при вимірах у досить широкому діапазоні зміни величини частоти джерела змінного струму (від кількох десятків до кількох сотень герц).
Феродинамічні амперметри, як і електродинамічні, мають одну чи дві нерухомі обмотки, розташовані на феромагнітному осерді (як показано на рис. 4.4), і рухому обмотку-рамку, яка живиться через пружинки, не розраховані на проходження по них значних струмів. Тому за схемою феродинамічні амперметри не відрізняються від електродинамічних. Перевагою феродинамічних амперметрів є їхня значно менша споживана потужність, більший обертовий момент і пов’язана з цим більша надійність у роботі. Вони також краще захищені від впливу зовнішніх магнітних полів.
Вольтметр — це прилад для вимірювання ЕРС чи напруги в електричних колах. Він приєднується паралельно з устаткуванням, де бажано виміряти якусь з цих величин.
Вольтметри виконують на основі:
Магнітоелектричні вольтметри використовують для вимірів напруг постійного струму. Електродинамічні та електростатичні вольтметри можуть бути використані для вимірювань як на постійному, так і на змінному струмах. Електромагнітні й феродинамічні вольтметри при використанні відповідних матеріалів при їх виготовленні (наприклад, пермалою) та при відповідній технології обробки цих матеріалів також можуть бути використані як на постійному, так і на змінному струмах.
Обмотки вимірювальних механізмів вольтметрів магнітоелектричної, електродинамічної, феродинамічної та електромагнітної систем намагаються виконати з якомога більшою кількістю витків, щоб одержати відхилення покажчика вольтметра до кінцевої позначки шкали при можливо меншому значенні струму, споживаного обмоткою (чи обмотками) вимірювального механізму. Зменшення цього струму дасть змогу зменшити об’єм, масу і вартість приладу.
У всіх вольтметрів (за винятком електростатичних) послідовно з обмотками вимірювального механізму (а у теплових — послідовно з розжарюваним дротом) ввімкнено додатковий опір, виконаний у вигляді котушок чи пластин з обмоткою з тонкого проводу, що має великий питомий електричний опір та малий температурний коефіцієнт опору (це манганін чи константан). Цей додатковий опір змонтовано всередині корпуса вольтметра, поряд з вимірювальним механізмом, чи у частині об’єму корпуса, відокремленого від вимірювального механізму теплоізоляційною перегородкою для зменшення впливу тепла, що виділяється обмотками котушок чи пластин додаткового опору, на вимірювальний механізм.
Додаткові опори, які виконані на пластинах, мають сприятливі умови для охолодження, тому їхня обмотка може бути виконана дротом меншого діаметра, ніж обмотка котушкового додаткового опору. При цьому витрата дроту високого питомого опору буде значно меншою, ніж у котушкового додаткового опору. Це зменшує грошові витрати у виробництві таких опорів. Але ізоляційні пластини, що разом з накладеною на них обмоткою підлягають термічній обробці при температурах, близьких до 100 °С, часто розривають накладений на них з натягом дріт, через відмінні величини температурних коефіцієнтів лінійного розширення пластин і дроту. Через це котушкові додаткові опори слід визнати більш надійними і більш технологічними.
Стаціонарні вольтметри, які встановлюють на щитах і пультах управління, звичайно виготовляють кожний на одну певну величину номінальної напруги і градуюють безпосередньо в одиницях напруги (у вольтах). Якщо стаціонарні вольтметри призначені для використання з вимірювальними трансформаторами напруги, то їх виконують на напругу повного відхилення 100 В, але шкалу градуюють згідно з напругою первинної обмотки вимірювального трансформатора напруги (частіш за все — у кіловольтах). При цьому на шкалі приладу обов’язково роблять напис, де вказують, з яким трансформатором напруги необхідно користуватися цим вольтметром. Якщо стаціонар
Якщо стаціонарний вольтметр призначено для вимірів з окремим зовнішнім додатковим опором, його також градуюють згідно з наявністю цього опору, а на шкалі робиться попереджувальний напис про вихідні дані цього додаткового опору.
Переносні вольтметри у більшості випадків виготовляють на декілька границь вимірювання напруги. У цих вольтметрів є декілька внутрішніх додаткових опорів, що послідовно з’єднані як між собою, так і з обмоткою вимірювального механізму. Схему триграничного вольтметра, розрахованого на границі вимірювань 75... 150...300 В, зображено на рис. 4. Зазначимо, що додаткові опори, зображені на схемі RД1, RД2 і RД3, в дійсності можуть складатись із кількох котушок (кожний), одну з яких використовують для того, щоб можна було при виготовленні вольтметра підігнати величину загального опору приладу для кожної границі вимірювань до величини, вказаної на шкалі цього приладу.
Вольтметр перемикають для вимірювань при різних напругах шляхом приєднання одного провідника, що підводить напругу від місця вимірювання до відповідного затискача вольтметра.
Звичайно, для безпеки на час перемикання границь вимірів напруги контрольоване цим вольтметром електричне коло необхідно вимкнути з мережі.
Щоб кожного разу цього не робити, у багатьох випадках вольтметри виконують з важільними чи кнопковими перемикачами границь вимірювання.
Вольтметри з перемикачами можуть мати дещо складнішу схему. Наприклад, при перемиканнях границь виміру напруги виникає можливість не тільки змінювати величину додаткових опорів, а ще й перемикати з послідовного на паралельне з’єднання секції котушок вимірювального механізму електродинамічних і електромагнітних вольтметрів. Саме для цього котушки цих приладів заздалегідь намотують двома (а то й трьома) проводами паралельно. Такі схеми дають можливість суттєво зменшити потужність, споживану приладом при вимірах відносно високих напруг, порівняно з вольтметрами, схеми яких схожі на схему, що наведена на рис. 4.
Мілівольтметри виконують за найпростішими схемами і частіше за все з однією границею вимірювань напруги. Створюють їх на основі магнітоелектричних вимірювальних механізмів для вимірів на постійному струмі.
Мілівольтметри змінного струму виконують як електронні прилади (див. гл. 5).
Для вимірювання струму на підвищених частотах (до 8000... 10 000 Гн) придатні також електромагнітні прилади. В Україні виробляли такі стаціонарні прилади на 1000, 2500 і 8000 Гц. За наявності у них феромагнітних пелюстків рухомої частини з тонкого пермалою, термічно обробленого у вакуумі чи відновлювальному середовищі, та при градуюванні їхніх шкал при струмі номінальної для них частоти, основна похибка цих приладів вкладається у межі, обумовлені їхнім класом точності (а це був клас 2,5).
Переносні амперметри електродинамічної системи також цілком придатні для вимірювань на підвищених частотах, але за наявності частотної компенсації, згідно з тим, як було розглянуто. Саме ці прилади використовують як зразкові при градуюванні та повірках стаціонарних приладів підвищеної частоти. Вибираючи зразковий прилад для вимірів на підвищеній частоті, слід орієнтуватися на позначення величини частоти на шкалі. Необхідно знати, що основна похибка приладу не повинна перевищувати значення, яке відповідає класу точності приладу лише на частоті чи у діапазоні частот, підкреслених рискою. Також треба враховувати, що при роботі приладу в діапазонах частот, позначених на шкалі, але не підкреслених (тобто у розширеному діапазоні частот), прилад може мати ще і додаткову похибку, що має не перевищувати величину похибки, зумовленої класом точності приладу. Тобто при роботі у розширеному діапазоні частот прилад може мати загальну величину похибки, вдвоє більшу за ту, що зумовлена класом точності приладу.
У колах змінного струму промислової та підвищеної частоти дуже часто застосовують випрямні прилади, що являють собою суміщення вимірювального механізму магнітоелектричної системи з напівпровідниковими випрямлячами. Ці прилади виконують комбінованими — здатними вимірювати, при відповідних переключеннях, ще й постійний струм і напругу.
Такі прилади, відомі під назвою “тестери”, роблять багатограничними, їх широко застосовують у налагоджувально-ремонтних роботах.
Принципові схеми випрямних приладів, що вимірюють напругу змінного струму за допомогою магнітоелектричних вимірювальних механізмів, зображено на рис. 5.
На цьому рисунку схема (а) забезпечує однопівперіодне випрямлення струму, а схема (б і в) — двопівперіодне. Однопівперіодне випрямлення було б можливим за наявності випрямляча В1, але при цьому випрямляч необхідно розрахувати на повне значення вимірюваної напруги, якщо вимірювальний механізм з випрямлячем буде застосовано у схемі вольтметра. Наявність другого (зустрічного) випрямляча В2 дає можливість використати обидва випрямлячі на величину напруги всього у кілька вольт. Додаткові опори rД розширюють границі вимірювання напруги.
Всім приладам з напівпровідниковими випрямлячами притаманні дві основні вади: залежність показів від величини температури та від величини частоти.
При підвищенні температури зменшуються величина опору напівпровідників та коефіцієнт випрямлення. При підвищенні частоти наявність ємності випрямлячів призводить до збільшення частки змінного 10 струму, що, не випрямляючись, проходить повз запірний шар напівпровідника. Це зменшує коефіцієнт випрямлення (і показання приладу) зі збільшенням величини частоти.
Є багато схем температурної та частотної компенсації похибок у випрямних приладах. Компенсація полягає у вмиканні дротяних резисторів, виконаних з мідного проводу, в ділянки кола приладу, де необхідне збільшення опору при підвищенні температури довкілля, та у вмиканні котушок індуктивностей у ділянки, де необхідне збільшення загального опору при підвищенні частоти.
Але у багатьох випадках при створенні випрямних вимірювальних приладів не вдаються до складних схем частотної компенсації, а обмежують діапазон робочих частот величиною, що досягає 1500...2500 Гц, якщо клас приладу на змінному струмі не перевищує 2,5...4,0.