Електричний частотомір (герцметр) — це прилад для вимірювання частоти коливань електричної напруги. На електричних станціях і в енергосистемах він — один з найважливіших приладів контролю якості електричної енергії, бо саме величина частоти впливає майже на всіх споживачів електричної енергії, приєднаних до енергосистеми.
В Україні та більшості європейських країн величина частоти, яка повинна бути в енергосистемі, становить 50 Гц і має підтримуватися близько цієї величини з відхиленням, що не перевищувало б ±0,5 Гц.
Зниження частоти в енергосистемі при незмінній величині напруги збільшує струми намагнічення в усіх двигунах і трансформаторах, приєднаних до енергосистеми, тобто зменшує коефіцієнт потужності у кожного з них, а також зменшує швидкість обертання всіх синхронних і асинхронних електродвигунів на всіх підприємствах, приєднаних до енергосистеми.
Залежно від принципу дії, частотоміри можуть бути: вібраційні; електродинамічні; феродинамічні; електромагнітні; камертонні; електронні (стрілочні та цифрові).
В енергетиці чи не найбільшого поширення набули електромагнітні вібраційні частотоміри. Їхня дія базується на явищі механічного резонансу коливань пружних пластин під дією збуджувальних коливань, Електрорадіовимірювання (обслуговування комп’ютерних систем та мереж, 2-ий курс) створюваних силами тяжіння електромагніта, котушка котрого живиться від джерела змінного струму, частоту якого бажано виміряти.
Такі частотоміри можуть бути виконані з безпосереднім (рис. 1, а) чи посереднім (рис. 1, б) збудженням. У обох різновидах частотомірів елементами, чутливими до частоти, є пружні пластини 3 з загнутими кінцями 4, розташовані в ряд проти прорізів, зроблених у шкалі 5 (у частотоміра з безпосереднім збудженням може бути і два ряди таких пластин, як видно з рис. 1, а). У обох видозмінах таких частотомірів електромагніт 2 з обмоткою 1 створює змінне магнітне поле, яке у частотоміра з безпосереднім збудженням викликає притягання сталевих пластин 3 до полюса електромагніта, а у частотоміра з посереднім збудженням — притягання якоря 6, жорстко пов’язаного з основою 7, на якій закріплено кінці всіх пластин 3. Ці пластини можуть бути виконані як зі сталі, так і з якогось іншого пружного матеріалу (наприклад, бронзи). Якір 6 з основою 7 закріплено на двох пружинах 8 до цоколя приладу 9.
Таким чином, у частотомірів обох видозмін всі пружні пластини 3 вібрують з частотою, вдвоє більшою, ніж частота напруги живлення обмотки 1. А вдвоє більшою тому, що за один період напруги живлення і сталеві пластини 3, і якір 6 притягуються до полюсів електромагніта 2 й відпускають ся від нього двічі, незалежно від полярності полюсів цього електромагніта. Але амплітуда вібрації кінців 4 цих пластин буде різною: найбільшою у тієї пластини, власна частота коливань якої дорівнює частоті сили збудження (тобто вдвоє більша за частоту напруги живлення). Менші амплітуди коливань будуть у сусідніх пластин, власна частота коливань яких трохи більша і трохи менша від подвоєної частоти напруги. І чим більш відмінною будуть власні частоти коливань пластин від цієї подвоєної частоти напруги, тим меншим буде розмах коливань кінців 4 цих пластин 3. Частоту коливань напруги знаходять за тією позначкою частотоміра проти якої видимий розмах коливань кінця пластини 3 є найбільшим. На рис. 1, в, де зображено шкалу частотоміра, показано, як виглядає показання розглянутих частотомірів, коли частота напруги мережі становить 49,5 Гц.
Аналогові частотоміри можуть бути:
Електродинамічні частотоміри — це прилади зі стрічковим покажчиком, виконані на основі електродинамічного логометра. Вони вирізняються відносно високим класом точності, зручністю в користуванні, бо дають можливість робити відлік за положенням стрілки на шкалі, градуйованій безпосередньо у герцах.
Схему одного з переносних частотомірів, що виробляються в Україні, зображено на рис. 2. На схемі позначено: Р1 і Р2 — обмотки рухомих рамок приладу, жорстко закріплених на осі рухомої системи під прямим кутом одна до одної; НК1 і НК2 — обмотки нерухомих котушок; L — котушка індуктивності з феромагнітним осердям, що має невеликий повітряний проміжок; С1 — конденсатор, який створює резонансний контур з котушкою L; r1 — додатковий опір, rш — підгінний опір; С2 — конденсатор, реактивний опір якого обмежує величину струму, що проходить через обмотку рамки Р2; AT — автотрансформатор, що дає можливість при величинах номінальних напруг контрольованої частотоміром мережі 36, 100, 127 або 220 В подавати на вимірювальний механізм певну величину напруги, на якій проводилось градуювання приладу. Зауважимо, що відхилення величини напруги мережі у межах ±10 % від її номінальної величини викликає лише невелику додаткову похибку у показаннях, яка не виходить за межі, допустимі для класу приладу. Частотоміри за наведеною схемою виробляють у декількох модифікаціях. Всі ці прилади здатні вимірювати частоти від 45 до 1650 Гц. Діапазон вимірювань частоти кожним з цих приладів відповідає ±10 % від значення середньої частоти, вимірюваної даним приладом, тобто від 45...55 до 1350... 1650 Гц.
Клас точності цих приладів — 0,2, тобто їхня основна похибка не перевищує ±0,2 % від середньої частоти, вимірюваної приладом.
У цих приладах зі зміною величини частоти змінюються також величина і фаза струму у нерухомих котушках НК, і НК2 і у рухомій котушці-рамці Так, якщо за частоти, що відповідає показанню посередині шкали приладу, величина реактивного індуктивного опору вітки, за якою проходить струм I1, дорівнюватиме величині ємнісного реактивного опору конденсатора С1, тоді через наявність резонансу напруг струм I1 буде найбільшим і перебуватиме у фазі з напругою Uf.
Рамка Р1 під дією обертового моменту, створеного взаємодією струму в рамці з магнітним потоком нерухомих котушок НК1 і НК2, перебуватиме у положенні, де площини цієї рамки і нерухомих котушок збігатимуться. Дією рамки Р2 можна знехтувати, бо через неї проходить струм I2, зсунутий відносно напруги Uf майже на 90°. Якщо ж величина частоти напруги Uf буде відмінна від частоти резонансу fp, то фаза струму I1 відносно напруги Uf вже не збігатиметься з напругою, і кут зсуву по фазі струму I1 відносно струму I2 буде відмінним від 90°. Тоді магнітний потік нерухомих котушок, взаємодіючи зі струмом I2, створить обертовий момент, що буде врівноважений моментом, створюваним рамкою Р1 при повороті рухомої частини приладу на кут, відповідний вимірюваній частоті напруги Uf. Зі схеми видно, що величина напруги Uf не впливає на кут відхилення рухомої частини, бо зміна величини напруги однаково вплине як на величину струму I1, так і на величину струму I2. Це призведе до однакової зміни величин обертових моментів, створюваних рамками Р1 і Р2, котрі протидіють один одному, тобто не змінить рівноваги між ними за даного положення рухомої частини приладу.
У цьому приладі, як і у всякому логометрі, відсутні спіральні пружини, а струм підводиться до рамок за допомогою трьох тонких “безмоментних” струмопідводів.
Феродинамічні частотоміри, побудовані на основі феродинамічних логометрів, можуть бути виконані на основі електричних схем, аналогічних схемам електродинамічних частотомірів.
Різниця між ними лише в тому, що споживана потужність у феродинамічного приладу може бути суттєво меншою, ніж у електродинамічного. Часто феродинамічні частотоміри виконують на основі найпростіших однорамочних логометрів, у котрих як діючий, так і протидіючий моменти створюються однією рамкою, через яку водночас проходять два струми: один (що створює момент протидії) викликаний ЕРС взаємоіндукції від дії струму, що є у обмотці нерухомої котушки, другий (той, що створює діючий момент) викликаний напругою мережі, частота якої вимірюється. Ця напруга прикладена до ємнісно-індуктивного кола приладу.
Як і у частотоміра електродинамічної системи, так і у феродинамічного для підводу струму до рамки використано “безмоментні” струмопідводи, але їх всього два.
Електромагнітний частотомір виконано на основі двоко- тушкового електромагнітного логометра, котрий має на своїй рухомій частині два феромагнітних осердя, кожне з яких взаємодіє з одною із нерухомих котушок. Обертові моменти електромагнітних систем, до яких входять згадані котушки і осердя, спрямовані зустрічно. Кожну з обмоток котушок ввімкнено послідовно з дроселем і конденсатором, які налаштовано в резонанс на відмінні величини частот. Одна — нижче за найменшу вимірювану частоту, друга — виша за найбільшу вимірювану частоту. Завдяки цьому рівність обертових моментів, що діють протилежно, в згаданих раніше системах буде одержано при різних величинах вимірюваної частоти у певних положеннях покажчика приладу на шкалі. Рухома частина цього приладу не має ні мо- ментних пружин, ні безмоментних струмопідводів.
Випрямні частотоміри, створені на основі магнітоелектричних логометрів, діють аналогічно тому, як діє електромагнітний частотомір. Тобто вони мають два резонансні контури: резонансна частота одного нижча за найменшу вимірювану, а іншого — виша за найбільшу вимірювану. Але змінні струми, що протікають у вказаних контурах, випрямлюються двопівперіодними випрямлячами і надсилаються до рамок рухомої частини магнітоелектричного логометра, кут повороту якої залежить від відношення цих струмів. Згідно з цим, положення стрілки на шкалі логометра визначатиме величину частоти напруги.
У електронного частотоміра приладом, що показує частоту, є магнітоелектричний міліамперметр, увімкнутий у коло вихідного каскаду електронного підсилювача. Вхідне коло підсилювача приєднане до частотно залежного ланцюга, струм якого мало залежить від величини напруги, частота котрої вимірюється. Завдяки наявності електронного підсилювача, потужність, споживана з вимірювального кола, у електронного частотоміра значно менша, ніж у всіх розглянутих вище частотомірів.
На підприємствах енергетичного профілю частоту найчастіше вимірюють за допомогою частотомірів, використання яких не викликає ніяких труднощів. Більшість часто томірів приєднують безпосередньо до мережі, частоту котрої необхідно виміряти, або до окремого джерела живлення змінного струму, частоту напруги якого слід контролювати. Необхідно лише впевнитись, що номінальна величина напруги мережі чи окремого джерела збігається з номінальною величиною напруги частотоміра, а також у тому, чи довіряти показанням частотоміра зразу ж після вмикання під напругу, чи лише після певного часу його роботи. Цей час може бути необхідний, щоб частини частотоміра, що містяться всередині його корпуса, нагрілися власним теплом, яке виникає в обмотках та осердях частотоміра, до належної температури.
Крім того, ще до встановлення і приєднання частотоміра необхідно впевнитись у відповідності умов у помешканні, де намічено встановити частотомір, тим умовам, які передбачені технічним описом приладу.
Більшість частотомірів, що застосовуються на електричних станціях та в енергосистемах, мають обмежену точність (клас їхньої точності 1,5; 1,0; 0,5; 0,2).
Разом з тим ці частотоміри потребують періодичної повірки, перш за все відомчої, яку з дозволу Державних метрологічних органів проводять метрологічні підрозділи підприємств і організацій, де експлуатують прилади. Повірка необхідна також після ремонту приладів.
При таких повірках необхідно забезпечити клас точності зразкового засобу вимірювання у 4...5 разів вищий за клас приладу, що повіряється. Якщо зразкових приладів необхідного класу точності немає, то використовують метод порівняння частот зразкового високоточного вимірювального генератора і джерела напруги змінної частоти, від якого живиться частотомір, що проходить повірку. Використовують ще і метод вимірювання частоти за допомогою часто- томірного мосту.
Безпосереднє вмикання частотоміра на генератор зразкових частот часто буває неможливим через малу потужність таких генераторів.
Досить надійним методом порівняння двох частот є метод биття, реалізація якого можлива згідно зі схемою рис. 3.
На цьому рисунку позначено: ЗГ — генератор зразкової частоти; ГЧ — генератор змінної частоти живлення приладу; ЧМ — частотомір, щ0 повіряється; П1, П2, П3 — підсилювачі; І — індикатор наявності коливань напруги; П — потенціометр. Для чіткої роботи схеми необхідно, щоб підсилювачі П1 і П2 були однотипними, а величини напруг на їхніх виходах — однаковими (щоб досягти цього, у схемі є потенціометр П, за допомогою якого на вході до підсилювача П2 можна встановити яку завгодно величину напруги). Індикаторний прилад І — це прилад для вимірювань постійного струму з нульовою позначкою посередині шкали. Він має бути здатним витримувати величину напруги змінного струму, яка виникає на виході підсилювача П3 при появі на його вході складених напруг, створених підсилювачами П1 і П2.
Порядок повірки частотоміра на подібній вимірювальній схемі може бути таким. Генератором зразкової частоти ЗГ встановлюють значення однієї з частот, вимірюваних частотоміром ЧМ. Генератором ГЧ встановлюють приблизно таку саму частоту (за показаннями частотоміра ЧМ), після чого звертають увагу на показання індикатора І. Якщо величини обох частот мало відрізняються між собою, то між напругами, що є на виходах підсилювачів П1 і П2, виникає биття — тобто почергове складання і віднімання миттєвих значень цих напруг.
Змінюючи величину частоти генератора ГЧ, досягають такого стану, при якому частота биття напруги стане зовсім малою (десь одне коливання за 5... 10 с). У цьому разі мож на вважати, що частоти напруг генераторів ЗГ і ГЧ зрівнюються.
Якщо в цей час показання покажчика частотоміра, що проходить повірку, відрізняється від частоти, генерованої генератором ЗГ, то, віднявши від показу частотоміра ЧМ (у герцах) дійсну частоту, з якою працює генератор ЗГ, можна визначити величину похибки частотоміра.
Метод биття можна застосовувати у виробничих лабораторіях при повірках частотомірів завдяки нескладності потрібного обладнання та достатньо високої точності вимірювань.
Застосовуючи зразковий кварцовий генератор з багатоступінчастим подільником частоти, можна отримати зразкову частоту з похибкою близько 0,000001 %.
Використовуючи термостатовані камертонні генератори, можна досягти точності, на порядок чи два меншої. їх можна використовувати й без подільників частоти.
Іноді для визначення рівності вимірюваної і зразкової частот як нульіндикатор використовують телефонну трубку. Це зовсім простий метод, який не вимагає додаткової апаратури, треба лише, щоб величини напруг зразкової і контрольованої частот були достатніми (і безпечними) для телефонної трубки. Але користуватись цим методом доцільно тільки при порівнянні підвищених і високих частот, бо людське вухо нездатне сприймати звуки з частотою, нижчою за 12...15 Гц. Наявність такої “мертвої” зони при порівнянні частот порядку 1000...5000 Гц і вище майже не впливає на точність вимірювань, але при порівнянні частот порядку 40...60 Гц вона зовсім недоречна, бо суттєво зменшує точність порівняння.